Abstract
The rising energy density and widespread use of lithium-ion batteries (LIBs) pose a growing safety challenge, marked by the potential for fires and explosions. Given the unique combustion characteristics of LIBs, the need for efficient and prompt fire suppression is paramount. Here we explore the mechanisms and characteristics of LIBs fires, emphasizing the critical design principles for effective fire-extinguishing agents and evaluating various agents, including gaseous, dry powders, water-based, aerosol-based, and composite-based fire-extinguishing agents, elucidating their mechanisms and effectiveness in suppressing LIBs fires. Noteworthy agents such as C6F12O and water-based solutions are highlighted for their superior extinguishing and cooling capabilities. Water-based fire-extinguishing agents show promise, exhibiting superior cooling capacity and anti-flash properties. Despite certain limitations, the review underscores the necessity of identifying an ideal fire-extinguishing agent that is thermally conductive, electrically insulating, cost-effective, non-toxic, residue-free, and capable of absorbing toxic gases. We conclude by discussing perspectives and outlooks, emphasizing the synergy between the ideal agent and innovative extinguishing strategies to ensure the high safety standards of current and future LIB-based technologies.
Publisher
The Electrochemical Society