A Review of Lithium-Ion Battery Fire Suppression

Author:

Ghiji MohammadmahdiORCID,Novozhilov VasilyORCID,Moinuddin KhalidORCID,Joseph PaulORCID,Burch Ian,Suendermann BrigittaORCID,Gamble GrantORCID

Abstract

Lithium-ion batteries (LiBs) are a proven technology for energy storage systems, mobile electronics, power tools, aerospace, automotive and maritime applications. LiBs have attracted interest from academia and industry due to their high power and energy densities compared to other battery technologies. Despite the extensive usage of LiBs, there is a substantial fire risk associated with their use which is a concern, especially when utilised in electric vehicles, aeroplanes, and submarines. This review presents LiB hazards, techniques for mitigating risks, the suppression of LiB fires and identification of shortcomings for future improvement. Water is identified as an efficient cooling and suppressing agent and water mist is considered the most promising technique to extinguish LiB fires. In the initial stages, the present review covers some relevant information regarding the material constitution and configuration of the cell assemblies, and phenomenological evolution of the thermal runaway reactions, which in turn can potentially lead to flaming combustion of cells and battery assemblies. This is followed by short descriptions of various active fire control agents to suppress fires involving LiBs in general, and water as a superior extinguishing medium in particular. In the latter parts of the review, the phenomena associated with water mist suppression of LiB fires are comprehensively reviewed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference222 articles.

1. LixCoO2 (0< x <-1): A new cathode material for batteries of high energy density;Mizushima;Mater. Res. Bull.,1980

2. Lithium insertion into manganese spinels

3. Fire Hazard Assessment of Lithium Ion Battery Energy Storage Systems;Blum,2016

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3