Abstract
In this study, we present a highly responsive room-temperature resistive humidity sensor based on a shellac-derived carbon (SDC) active film deposited on sub-micrometer-sized carbon interdigitated electrodes (cIDEs). This monolithic carbon-based sensor demonstrates an excellent linear relationship with humidity and ohmic contact between the active carbon film and carbon electrodes, which results in low noise and low power consumption (∼1 mW). The active SDC film is synthesized by a single-step thermal process, wherein the temperature is found to control the amount of oxygen functional moieties of the SDC film, thereby providing an efficient means to optimize the sensor response time, recovery time, and sensitivity. This SDC–cIDEs-based humidity sensor exhibits an excellent dynamic range (0%–90% RH), a large dynamic response (50%), and high sensitivity (0.54/% RH). In addition, the two-dimensional feature (thickness ∼10 nm) of the SDC film enables a swift absorption/desorption equilibrium, leading to fast response (∼0.14 s) and recovery (∼1.7 s) under a humidity range of 0%–70% RH. Furthermore, the thin SDC-based sensor exhibited excellent selectivity to humidity from various gases, which in combination with its fast response/recovery promises its application for an instant calibration tool for gas sensors.
Funder
Ministry of Science and ICT
Ministry of Education
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献