Abstract
Due to their rapid growth in industrial and environmental applications, there is a need to develop self-powered humidity sensor systems with improved sensitivity, a wide detection range, and an eco-friendly nature. In this study, an aqueous solution of chitosan (CS) and polyvinyl alcohol (PVA) was blended to yield a composite film material with enhanced humidity detection properties. Meanwhile, a polyvinylidene difluoride (PVDF)-loaded chitosan composite film was developed and employed as a piezoelectric generator. Moreover, the developed composite materials for both devices (the piezoelectric generator and the humidity sensor) were optimized based on output performance. The piezoelectric generator generates a maximum of 16.2 V when a force of 10 N is applied and works as a power source for the humidity-sensing film. The sensing film swells in response to changes in relative humidity, which affects film resistance. This change in resistance causes a change in voltage through the piezoelectric generator and allows the precise measurement of relative humidity (RH). The fabricated sensor showed a linear response (R2 = 0.981) with a reasonable sensitivity (0.23 V/% RH) in an environment with an RH range of 21–89%. In addition, the device requires no external power, and therefore, it has numerous sensing applications in various fields.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献