An Analysis of Solid-State Electrodeposition-Induced Metal Plastic Flow and Predictions of Stress States in Solid Ionic Conductor Defects

Author:

Barroso-Luque Luis,Tu Qingsong,Ceder Gerbrand

Abstract

The use of inorganic solid-ionic conductors with a metal electrode, has been proposed as a way to increase energy density, decrease capacity loss and prevent failure from metal propagation. Current observations of Li-metal electrodes causing cell shorting in solid-state systems have been identified as main obstacles limiting the development of this technology. However, many aspects of the involved phenomenon have not been fully addressed theoretically. In this work, we derive a mathematical model of electrodeposition-induced plastic flow in metal/inorganic solid-conductor systems. We use a semi-analytical solution to derive pressure increase expressions at metal protrusions and assess the possibility of fracture. The results give flow solutions analogous to laminar channel flow. The solutions also show how taking into account a boundary traction potential from built up pressure, leads to ionic redistribution and effectively screens isolated flaws, making local current focusing an incomplete explanation for observed electrolyte fracture. We show that the boundary traction potential sets a maximum value for the pressure increase that can occur from deposition at an isolated flaw. We derive conditions under which fracture can occur, and quantify the role of ionic conductivity and electrolyte fracture toughness in extending safe operating regimes of solid-state electrolytes with metal electrodes.

Funder

National Science Foundation

Department of Energy ∣ Office of Energy Efficiency and Renewable Energy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3