Performance of ANN in Predicting Internal Bonding of Cement Particleboard Manufactured from Giant Reed and Bagasse

Author:

Nazerian Morteza1,Assadolahpoor Nanaii Hossin2,Vatankhah Elham1,Koosha Mojtaba1

Affiliation:

1. Shahid Beheshti University, Faculty of New technologies Engineering, Department of BioSystems, Tehran, Iran

2. University of Zabol, Faculty of Natural Resources, Department of Wood and Paper Science and Technology, Zabol, Iran

Abstract

The present article investigates the microstructure of the cement matrices and the products of cement hydration by means of scanning electron microscopy, Fourier transform infrared spectroscopy and X-Ray diffraction. Then, the internal bonding strength (IB) is measured for the mixtures containing various amounts of nanosilica (NS), reed and bagasse particles. Finally, an Artificial Neural Network (ANN) is trained to reproduce these experimental results. The results show that the hardened cement paste including NS features the highest level of C-S-H. However, it has a lower level of C-S-H polymerization if reed or bagasse particles are applied. A relatively new dense microstructural degree is considered in the cement pastes containing NS, and a lower agglomeration is observed in the samples including reed or bagasse particles with NS. According to the microstructural analysis, the addition of NS to the samples containing reed or bagasse particles increases the unhydrated amount of C2S and C3S in the cement paste due to the decrease in the water needed for fully hydrated cement grains through portlandite (Ca(OH)2), C-S-H and ettringite increase. Besides, it is shown that the ANN prediction model is a useful, reliable and quite effective tool for modeling IB of cement-bonded particleboard (CBPB). It is indicated that the mean absolute percentage errors (MAPE) are 1.98 % and 1.45 % in the prediction of the IB values for the training and testing datasets, respectively. The determination coeffi cients (R2) of the training and testing data sets are 0.972 and 0.997 in the prediction of the bonding strength by ANN, respectively.

Publisher

Faculty of Forestry, University of Zagreb

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3