Experimental Verification of a Highly Simplified, Preliminary Machinability Test for Wood-Based Boards in the Case of Drilling

Author:

Podziewski Piotr,Śmietańska Katarzyna,Górski Jarosław

Abstract

In contrast to metalworking there are no standardized or (at least) generally accepted, relative machinability tests for innovative or less known wood-based panels. The most reliable testing procedures are based on the use of a specialized, accurate system for measuring cutting forces and on conducting all tests in conditions that are similar to real industrial conditions (machine tool, cutting parameters etc.). However, the need for a more simplified testing procedure has often been voiced—not all scientists specializing in wood-based materials development have a machine tool comparable to one that can be found in a real furniture factory and piezoelectric force sensors at their unlimited disposal. To meet this need, the highly simplified, preliminary machinability test for wood-based boards in the case of drilling was developed and tried. The results of experimental research suggest that the simplified way of testing of relative machinability of wood-based boards (i.e., testing based on the photoelectric measurement of the time needed to make a 10 mm deep hole under constant feed force) can be a useful substitute of standard machinability testing procedure (based on accurate cutting forces measurements carried out in the standard industrial conditions). When verifying the simplified testing procedure, samples from each of the three basic groups of wood-based materials of substantially different internal structures (fiberboard, particleboard, and veneer boards) were tested. The relationship between significantly reliable and highly simplified machinability indexes turned out to be at a satisfactory level (R2 = 0.97 for particleboards and R2 = 0.95 for fiberboards or boards made of veneer or solid wood). The use of a simplified procedure can be especially pragmatic in case of any preliminary testing of innovative wood-based boards during the material development work.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3