Experimental Analysis of Smart Drilling for the Furniture Industry in the Era of Industry 4.0

Author:

Szwajka Krzysztof1ORCID,Zielińska-Szwajka Joanna2ORCID,Trzepieciński Tomasz3ORCID

Affiliation:

1. Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland

2. Department of Component Manufacturing and Production Organization, Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland

3. Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland

Abstract

The fact is that hundreds of holes are drilled in the assembly process of furniture sets, so intelligent drilling is a key element in maximizing efficiency. Increasing the feed rate or the cutting speed in materials characterized by a higher machinability index is necessary. Smart drilling, that is, the real-time adjustment of the cutting parameters, requires the evolution of cutting process variables. In addition, it is necessary to control and adjust the processing parameters in real time. Machinability is one of the most important technological properties in the machining process, enabling the determination of the material’s susceptibility to machining. One of the machinability indicators is the unit cutting resistance. This article proposes a method of material identification using the short-time Fourier transform in order to automatically adjust cutting parameters during drilling based on force signals, cutting torque and acceleration signals. In the tests, four types of wood-based materials were used as the processed material: medium-density fiberboard, chipboard, plywood board and high-pressure laminate. Holes with a diameter of 10 mm were drilled in the test materials, with variable feed rate, cutting speed and thickness of cutting layer. An innovative method for determining the value of unit cutting resistance was proposed. The results obtained were used to determine the machinability index. Based on the test results, it was shown that both the selected signal measures in the time and frequency domains and the unit cutting resistance are constant for a given material of a workpiece and do not depend on the drilling process parameters. In this article, the methodology is proposed, which can be used as an intelligent technique to support the drilling process to detect the material being machined using data from sensors installed on the machine tool. The work proposes the fundamentals for material identification based on the analysis of force signals and the magnitude of force derivatives. The proposed methodology shows effectiveness, which proves that it can be used in intelligent drilling processes. Hybrid wood-based material structures consisting of different materials are becoming more and more common in building structures for strength, economic and environmental reasons. Due to the difference in the machinability of interconnected materials, cutting parameters must be optimized in real time during machining. Currently, with the rapid development of Industry 4.0, the on-line identification of parameters is becoming necessary to improve the process flow in industrial reality. The proposed methodology can be used as an intelligent technique to support the drilling process in order to detect the material being processed using data from sensors installed on the machine tool.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Wood Composite Drilling with Artificial Neural Network and Response Surface Methodology;Forests;2024-09-11

2. Electrical Demand Analysis and System Design for Medium-Density Fibreboard (MDF) Manufacturing;2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA);2024-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3