Mixed Student Ideas about Mechanisms of Human Weight Loss

Author:

Sripathi Kamali N.1,Moscarella Rosa A.2,Yoho Rachel3,You Hye Sun4,Urban-Lurain Mark1,Merrill John5,Haudek Kevin6

Affiliation:

1. CREATE for STEM Institute, Michigan State University, East Lansing, MI 48824

2. Biology Department, University of Massachusetts Amherst, Amherst, MA 01003

3. Project Dragonfly and Department of Biology, Miami University, Oxford, OH 45056

4. Department of Physical Sciences, Arkansas Tech University, Russellville, AR 72801

5. Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824

6. Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824

Abstract

Recent calls for college biology education reform have identified “pathways and transformations of matter and energy” as a big idea in biology crucial for students to learn. Previous work has been conducted on how college students think about such matter-transforming processes; however, little research has investigated how students connect these ideas. Here, we probe student thinking about matter transformations in the familiar context of human weight loss. Our analysis of 1192 student constructed responses revealed three scientific (which we label “Normative”) and five less scientific (which we label “Developing”) ideas that students use to explain weight loss. Additionally, students combine these ideas in their responses, with an average number of 2.19 ± 1.07 ideas per response, and 74.4% of responses containing two or more ideas. These results highlight the extent to which students hold multiple (both correct and incorrect) ideas about complex biological processes. We described student responses as conforming to either Scientific, Mixed, or Developing descriptive models, which had an average of 1.9 ± 0.6, 3.1 ± 0.9, and 1.7 ± 0.8 ideas per response, respectively. Such heterogeneous student thinking is characteristic of difficulties in both conceptual change and early expertise development and will require careful instructional intervention for lasting learning gains.

Publisher

American Society for Cell Biology (ASCB)

Subject

General Biochemistry, Genetics and Molecular Biology,Education

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3