Using automated analysis to assess middle school students' competence with scientific argumentation

Author:

Wilson Christopher D.1ORCID,Haudek Kevin C.2ORCID,Osborne Jonathan F.3ORCID,Buck Bracey Zoë E.1ORCID,Cheuk Tina4ORCID,Donovan Brian M.1ORCID,Stuhlsatz Molly A. M.1,Santiago Marisol M.2,Zhai Xiaoming5ORCID

Affiliation:

1. BSCS Science Learning Colorado Springs Colorado USA

2. Michigan State University East Lansing Michigan USA

3. Stanford University Stanford California USA

4. California Polytechnic State University San Luis Obispo California USA

5. University of Georgia Athens Georgia USA

Abstract

AbstractArgumentation is fundamental to science education, both as a prominent feature of scientific reasoning and as an effective mode of learning—a perspective reflected in contemporary frameworks and standards. The successful implementation of argumentation in school science, however, requires a paradigm shift in science assessment from the measurement of knowledge and understanding to the measurement of performance and knowledge in use. Performance tasks requiring argumentation must capture the many ways students can construct and evaluate arguments in science, yet such tasks are both expensive and resource‐intensive to score. In this study we explore how machine learning text classification techniques can be applied to develop efficient, valid, and accurate constructed‐response measures of students' competency with written scientific argumentation that are aligned with a validated argumentation learning progression. Data come from 933 middle school students in the San Francisco Bay Area and are based on three sets of argumentation items in three different science contexts. The findings demonstrate that we have been able to develop computer scoring models that can achieve substantial to almost perfect agreement between human‐assigned and computer‐predicted scores. Model performance was slightly weaker for harder items targeting higher levels of the learning progression, largely due to the linguistic complexity of these responses and the sparsity of higher‐level responses in the training data set. Comparing the efficacy of different scoring approaches revealed that breaking down students' arguments into multiple components (e.g., the presence of an accurate claim or providing sufficient evidence), developing computer models for each component, and combining scores from these analytic components into a holistic score produced better results than holistic scoring approaches. However, this analytical approach was found to be differentially biased when scoring responses from English learners (EL) students as compared to responses from non‐EL students on some items. Differences in the severity between human and computer scores for EL between these approaches are explored, and potential sources of bias in automated scoring are discussed.

Funder

National Science Foundation

Publisher

Wiley

Subject

Education

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3