Physiological and molecular response of cotton (Gossypium hirsutum L.) to heat stress at the seedling stage

Author:

Sajid M.,Saddique M.A.B.,Tahir M.H.N.,Matloob A.,Ali Z.,Ahmad F.,Shakil Q.,Nisa Z.U.,Kifayat M.

Abstract

The ideal temperature range for the optimal growth and development of cotton is 25 °C–32 °C and high temperature adversely affects the metabolic activities of plant cells. This study was aimed to screen heat-tolerant cotton genotypes based on physiological and molecular parameters. Experiments were carried out during 2019–2020 at the MNS-University of Agriculture, Multan, Pakistan. The research comprised two parts. In the first experiment, 30 cotton genotypes were sown in a completely randomized design with three replications under laboratory conditions for the determination of cell membrane thermostability. Principal component analysis was performed, and four genotypes, i.e., two heat-tolerant (‘CRIS-5A’ and ‘VH-338’) and two heat-sensitive (‘FH-242’ and ‘VH-281’) genotypes, were selected. In the second experiment, the screened cotton genotypes were sown in pots in a factorial complete randomized design with three replications and two treatments (normal and heat treatment). Heat stress was applied at the seedling stage, and eight leaf samples (one from each experimental unit) were collected. Two genes were used for molecular analysis and were amplified in all eight cDNA samples. Molecular analysis indicated the presence of HSP70 and HSP26 genes in the cotton genotypes, and the expression of these genes was measured by using ImageJ software. The gene expression level of HSP70 was very high (16.41%) in ‘VH-281’, which is a heat-sensitive genotype under heat stress. The sensitive genotype ‘FH-242’ exhibited the highest gene expression level of HSP26 (20.32%) under normal conditions. A similar sequence of HSP70 gene of Agave sisalana was amplified for the first time in cotton. It is a good indicator for screening heat tolerant cotton genotypes at the molecular level.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Subject

Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3