Abstract
Drought tolerance is a quantitative trait that is exceedingly challenging to breed, especially for allotetraploids like cotton. The scenario of limited water resources necessitates developing droughttolerant cultivars that conserve significant irrigation water throughout the summer. Therefore, the presented study used a design to statistically analyze the morphological, physiological, and fiber quality parameters linked with drought tolerance, which is a comprehensive method for choosing better genotypes from the available cotton germplasm. Measuring these parameters ensued for plants grown under field conditions. The germplasm comprised 150 cotton genotypes studied at two water regimes, i.e., regular and water-stressed conditions for two consecutive seasons of 2015–2016 and 2016–2017. Data recording ran for different morpho-physiological and fiber quality parameters. Significant differences occurred for all the treatments, genotypes, and Genotype × Environment interaction for all the morphological, physiological, and fiber quality parameters under study. Additive Main effects and Multiplicative Interaction (AMMI) analysis and AMMI biplot analysis helped analyze the results, which revealed that the cotton genotypes FH-900, FH-901, FH-312, AS-1, AS-2, AS-3, RH510, RH-627, AR-2, AR-9, BH-118, BH-175, SLH-74, CIM-1100, CIM-598, and MM-58 were drought tolerant and ranked highest concerning stress condition. Moreover, correlation studies distinguished the relationship between relevant traits concerning drought tolerance.
Publisher
Society for the Advancement of Breeding Research in Asia and Oceania
Subject
Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology