Exploring a novel framework for DoS/DDoS attack detection and simulation in contemporary networks

Author:

Gottapu Sankara Rao1,P. Krishna Subbarao2

Affiliation:

1. Jawaharlal Nehru Technological University (JNTU)

2. Gayatri Vidya Parishad College of Engineering (GVPCE)

Abstract

Currently, the internet serves as the predominant means of communication and is utilized by a vast number of individuals worldwide. Simultaneously, the commercial aspect of the internet is contributing to a rise in susceptibility to cybercrimes, leading to a significant surge in the occurrence of distributed Denial of Service (DDoS) assaults over the last decade. DoS/DDoS assaults primarily target network resources such as network bandwidth, CPU time, memory consumption, web servers, and network switches. Network security is an essential and crucial problem in the modern interconnected society. Numerous studies have been undertaken by multiple researchers thus far in order to identify this attack. However, there is still room for improvement in past investigations. This paper presents a novel approach for detecting and simulating DoS/DDoS attacks in modern networking environments, introducing a new paradigm. It is done in a controlled environment. The primary focus of this work is to simulate an attacker's perspective of a DoS/DDoS attack by repeatedly sending huge SYN flood packets to a specific target or network server using the hping3 tool. On the server side, the proposed attacker detector script continuously monitors incoming network connections on the network server using the netstat command. It identifies potential DoS/DDoS attacks by analyzing the connection count and comparing connections count with an assumed threshold. This experiment results in 61% CPU usage and 7.1% memory consumption while a DDoS attack triggers on the target server. Additionally, the proposed script performs statistical analysis and displays warning messages on the console when suspicious activity is detected on the network server. Wireshark is also utilized in this work to detect anomalous network traffic patterns in order to identify distributed denial-ofservice (DDoS) attacks that are targeting a network server. Additionally, it offers the capability to block the IP address of the attacker if the configuration allows for it. This proposed approach efficiently identifies DDoS activity in real-time network traffic, further helping to improve network security.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3