DDoS attacks detection using machine learning and deep learning techniques: analysis and comparison

Author:

Al-Shareeda Mahmood A.ORCID,Manickam SelvakumarORCID,Saare Murtaja AliORCID

Abstract

The security of the internet is seriously threatened by a distributed denial of service (DDoS) attacks. The purpose of a DDoS assault is to disrupt service and prevent legitimate users from using it by flooding the central server with a large number of messages or requests that will cause it to reach its capacity and shut down. Because it is carried out by numerous bots that are managed (infected) by a single botmaster using a fake IP address, this assault is dangerous because it does not involve a lot of work or special tools. For the purpose of identifying and analyzing DDoS attacks, this paper will discuss various machine learning (ML) and deep learning (DL) techniques. Additionally, this study analyses and comparatives the significant distinctions between ML and DL techniques to aid in determining when one of these techniques should be used.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving Network Security with Gradient Boosting from KDD Cup Dataset;SN Computer Science;2024-09-13

2. Secure-by-Design Real-Time Internet of Medical Things Architecture: e-Health Population Monitoring (RTPM);Telecom;2024-07-10

3. Enhancing Cybersecurity: A Fusion Approach of Artificial Neural Networks and Decision Trees for Robust Imbalanced DDoS Attack Detection;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

4. Internet of Things (IoT) Technologies With Intrusion Detection Systems in Deep Learning;Advances in Information Security, Privacy, and Ethics;2024-06-28

5. Inter-Slice Defender: An Anomaly Detection Solution for Distributed Slice Mobility Attacks;2024 IFIP Networking Conference (IFIP Networking);2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3