Hybrid Approach for Detection of Anomaly Network Traffic using Data Mining Techniques

Author:

Agarwal Basant,Mittal Namita

Publisher

Elsevier BV

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference18 articles.

1. Altyeb Altaher, Sureswaran Ramadass, Bhavani Thuraisingham, Mohammad Mehedy, 28-30 Oct. 2011, “On-Line anomaly Detection Based On Relative Entropy”, Broadband Network and Multimedia Technology (IC-BNMT), 2011 4th IEEE International Conference, pp 33-36.

2. C. Cortes and V. Vapnik. 1995, “Support-vector network. Machine Learning”, Kluwer Academic Publishers, Boston. pp: 273-297.

3. DARPA Intrusion Detection Evaluation Data Sets 1999, available at http://www.ll.mit.edu/IST/ideval/data/data\index.html.

4. Denning, D.E. 1987, “An Intrusion-Detection Model”, Software Engineering, IEEE Transactions., SE-13, Issue: 2 pp 222-232.

5. G. Nychis, V. Sekar, D.G. Anderson. 2008, “An Empirical Evaluation of Entropy-based Anomaly Detection” Proceedings of the 8th ACM SIGCOMM conference on Internet measurement, ACM Press,pp 151-156.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adversarially robust and real-time DDoS detection and classification framework using AutoML;Information Security Journal: A Global Perspective;2024-04-04

2. DDoS attack detection in SDN: Enhancing entropy‐based detection with machine learning;Concurrency and Computation: Practice and Experience;2024-01-23

3. Exploring a novel framework for DoS/DDoS attack detection and simulation in contemporary networks;i-manager’s Journal on Software Engineering;2024

4. Assessment of Deep Packet Inspection System of Network traffic and Anomaly Detection;International Journal of Scientific Research in Science, Engineering and Technology;2023-06-06

5. Improvised Ensemble Model for Fast Prediction of DoS/DDoS Attacks in Various Networks;2023 1st International Conference on Cognitive Computing and Engineering Education (ICCCEE);2023-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3