Abstract
We prove a subconvexity bound for the central value $L(\frac{1}{2},{\it\chi})$ of a Dirichlet $L$-function of a character ${\it\chi}$ to a prime power modulus $q=p^{n}$ of the form $L(\frac{1}{2},{\it\chi})\ll p^{r}q^{{\it\theta}+{\it\epsilon}}$ with a fixed $r$ and ${\it\theta}\approx 0.1645<\frac{1}{6}$, breaking the long-standing Weyl exponent barrier. In fact, we develop a general new theory of estimation of short exponential sums involving $p$-adically analytic phases, which can be naturally seen as a $p$-adic analogue of the method of exponent pairs. This new method is presented in a ready-to-use form and applies to a wide class of well-behaved phases including many that arise from a stationary phase analysis of hyper-Kloosterman and other complete exponential sums.
Subject
Algebra and Number Theory
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献