Non-contractible periodic orbits in Hamiltonian dynamics on closed symplectic manifolds

Author:

Ginzburg Viktor L.,Gürel Başak Z.

Abstract

We study Hamiltonian diffeomorphisms of closed symplectic manifolds with non-contractible periodic orbits. In a variety of settings, we show that the presence of one non-contractible periodic orbit of a Hamiltonian diffeomorphism of a closed toroidally monotone or toroidally negative monotone symplectic manifold implies the existence of infinitely many non-contractible periodic orbits in a specific collection of free homotopy classes. The main new ingredient in the proofs of these results is a filtration of Floer homology by the so-called augmented action. This action is independent of capping and, under favorable conditions, the augmented action filtration for toroidally (negative) monotone manifolds can play the same role as the ordinary action filtration for atoroidal manifolds.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference52 articles.

1. [PS14] L. Polterovich and E. Shelukhin , Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Selecta. Math. (N.S.), to appear. Preprint (2014), arXiv:1412.8277.

2. [LCT15] P. Le Calvez and F. A. Tal , Forcing theory for transverse trajectories of surface homeomorphisms, Preprint (2015), arXiv:1503.09127.

3. On the generic existence of periodic orbits in Hamiltonian dynamics;Ginzburg;J. Mod. Dyn.,2009

4. [UZ15] M. Usher and J. Zhang , Persistent homology and Floer–Novikov theory, Geom. Topol., to appear. Preprint (2015), arXiv:1502.07928.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3