Affiliation:
1. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China
Abstract
In this paper, we establish the existence of periodic orbits belonging to any [Formula: see text]-atoroidal free homotopy class for Hamiltonian systems in the twisted disc bundle, provided that the compactly supported time-dependent Hamiltonian function is sufficiently large over the zero section and the magnitude of the weakly exact [Formula: see text]-form [Formula: see text] admitting a primitive with at most linear growth on the universal cover is sufficiently small. The proof relies on showing the invariance of Floer homology under symplectic deformations and on the computation of Floer homology for the cotangent bundle endowed with its canonical symplectic form. As a consequence, we also prove that, for any non-trivial atoroidal free homotopy class and any positive finite interval, if the magnitude of a magnetic field admitting a primitive with at most linear growth on the universal cover is sufficiently small, the twisted geodesic flow associated to the magnetic field has a periodic orbit on almost every energy level in the given interval whose projection to the underlying manifold represents the given free homotopy class. This application is carried out by showing the finiteness of the restricted Biran–Polterovich–Salamon capacity.
Funder
NSFC
the Fundamental Research Funds for the Central Universities
China Postdoctoral Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献