Floer homology in the cotangent bundle of a closed Finsler manifold and noncontractible periodic orbits

Author:

Gong Wenmin,Xue Jinxin

Abstract

Abstract We show that the existence of noncontractible periodic orbits for compactly supported time-dependent Hamiltonian on the disk cotangent bundle of a Finsler manifold provided that the Hamiltonian is sufficiently large over the zero section. We generalize the Biran–Polterovich–Salamon capacities and earlier constructions of Weber (2006 Duke Math. J. 133 527–568) and other authors Biran et al (2003 Duke Math. J. 119 65–118) to the Finsler setting. We then obtain a number of applications including: (1) generalizing the main theorem of Xue (2017 J. Symplectic Geom. 15 905–936) to the Lie group setting, (2) preservation of minimal Finsler length of closed geodesics in any given free homotopy class by symplectomorphisms, (3) existence of periodic orbits for Hamiltonian systems separating two Lagrangian submanifolds, (4) existence of periodic orbits for Hamiltonians on noncompact domains, (5) existence of periodic orbits for Lorentzian Hamiltonian in higher dimensional case, (6) partial solution to a conjecture of Kawasaki (2016 Heavy subsets and non-contractible trajectories (arXiv:1606.01964)), (7) results on squeezing/nonsqueezing theorem on torus cotangent bundles, etc.

Funder

The Fundamental Research Funds for the Central Universities

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The unbounded Lagrangian spectral norm and wrapped Floer cohomology;Journal of Geometry and Physics;2024-08

2. Infinitely many noncontractible closed magnetic geodesics on non-compact manifolds;Differential Geometry and its Applications;2023-04

3. Minimax Periodic Orbits of Convex Lagrangian Systems on Complete Riemannian Manifolds;The Journal of Geometric Analysis;2022-08-03

4. Relative Hofer–Zehnder capacity and positive symplectic homology;Journal of Fixed Point Theory and Applications;2022-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3