Piezoelectric Performance of Microbial Chitosan Thin Film Derived from Aspergillus oryzae

Author:

Bin Zamli Muhamad Izzuddin12,Akmal M. H. Maziati3ORCID,Niazi Fazeela1,Ahmad Farah B1ORCID,Hisham Firzanah4

Affiliation:

1. Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), 53100 Kuala Lumpur, Malaysia

2. DIC Compounds Sdn. Bhd., Lorong Perusahaan Baru 2, Kawasan Perusahaan Perai, 13600 Perai, Penang, Malaysia

3. Department of Science in Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), 53100 Kuala Lumpur, Malaysia

4. Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), 53100 Kuala Lumpur, Malaysia

Abstract

In this study, chitosan thin film derived from Aspergillus oryzae cell walls was fabricated and characterised. First, the chitosan from the fungal biomass was extracted (0.18 g/g) with 52.25% of degree of deacetylation obtained through Fourier transform infrared (FTIR) spectroscopy. Subsequently, several parameters of the chitosan thin film fabrication were optimised, including chitosan solution volume and drying temperature. Resultantly, the highest mechanical quality factor (3.22±0.012), the lowest dissipation factor (0.327±0.0003) and the best tensile strength (13.35±0.045 MPa) were obtained when pure chitosan was dissolved in 35 ml of 0.25 M formic acid and dried at 60 ˚C. In addition, the scanning electron microscopy (SEM) analysis presented a fine chitosan agglomerate distributed in the formic acid. The optimised fabricated, fungal-derived chitosan thin film was validated, recording a mechanical quality factor of 3.68 and dissipation factor of 0.248; both values were comparable to the synthetic polymer, polyvinylidene fluoride (PVDF) thin film. Thus, fungal-derived chitosan thin film can potentially be used as a piezoelectric material.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3