Coatings Based on Two-Dimensionally Ordered Linear Chain Carbon for Protection of Titanium Implants from Microbial Colonization

Author:

Tapalski D. V.1,Nikolaev N. S.2,Ovsyankin A. V.3,Kochakov V. D.4,Golovina E. A.3,Matveenkov M. V.5,Sukhorukova M. V.6,Kozlov R. S.6

Affiliation:

1. Gomel State Medical University

2. Federal Center of Traumatology, Orthopedics and Endoprosthetics, Cheboksary

3. Federal Center of Traumatology, Orthopedics and Endoprosthetics, Smolensk

4. Ulyanov Chuvash State University

5. Institute of Radiobiology of the National Academy of Sciences of Belarus

6. Research Institute of Antimicrobial Chemotherapy of Smolensk State Medical University

Abstract

Purpose of the study – to evaluate the antibacterial activity and biological compatibility of alloy coatings based on two-dimensionally ordered linear chain carbon (TDOLCC).Materials and Methods. Coatings based on TDOLCC were synthesized using alloying additions like nitrogen (TDOLCC+N) and silver (TDOLCC+Ag) on the surfaces of titanium plates and polystyrene plates by the ion-stimulated carbon condensation in a vacuum. The authors examined the superficial bactericidal activity of the coatings and its resistance to mechanical effects. Coated plates were evaluated in respect of rate of microbial biofilms formation by clinical isolates with multiple and extreme antibiotic resistance. Specimens were colored with crystal violet solution to visualize the biofilms. Cytotoxic effect of coatings was evaluated in respect of primary culture of fibroblasts and keratinocyte cell line HaCaT.Results. The authors observed pronounced superficial bactericidal effect of TDOLCC+Ag coating in respect of microorganisms of several taxonomic groups independently of their resistance to antibacterial drugs. TDOLCC+Ag coating proved capable to completely prevent microbial biofilm formation by antibiotic resistant clinical isolates of S. aureus and P. aeruginosa. Silvercontaining coating demonstrated mechanical resistance and preservation of close to baseline level of superficial bactericidal activity even after lengthy abrasion treatment. TDOLCC based coatings did not cause any cytotoxic effects. Structure of monolayers formed in cavities coated by TDOLCC+N and TDOLCC+Ag was indistinguishable from the monolayers in cavities of control plates.

Publisher

ECO-Vector LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3