Surface Coating Strategies to Prevent Biofilm Formation on Implant Surfaces

Author:

Bruellhoff Kristina1,Fiedler JöRg2,MöLler Martin1,Groll JüRgen1,Brenner Rolf E.2

Affiliation:

1. DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen - Germany

2. Department of Orthopedics, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm - Germany

Abstract

Implant surfaces should ideally be designed to promote the attachment of target tissue cells; at the same time, they should prevent bacterial adhesion, achievable through modification strategies comprising three lines of defense. As the first criterion, selective adhesion can be realized by means of non-adhesive coatings that can be functionalized with small peptides, thereby supporting osteogenic cell attachment for implants in bone contact but not bacterial adhesion. The second line of defense, defined by bacterial survival, quorum sensing and biofilm formation, can be addressed by various antimicrobial substances that can be leaching or non-leaching. The possibility of a third line of defense, the disruption of an established biofilm, is just emerging. Since microorganisms are quite “ingenious” at finding ways to overcome a certain line of defense, the most promising solution might be a combination of all these antibacterial strategies. Coating systems that allow such different approaches to be combined are scarce. However, ultrathin multifunctional NCO-sP(EO-stat-PO)-based layers may represent a promising platform for such an integrated approach.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3