The effect of prey identity and substrate type on the functional response of a globally invasive crayfish

Author:

South JosieORCID,McCard Monica,Khosa DumisaniORCID,Mofu LubabaloORCID,Madzivanzira Takudzwa C.,Dick Jaimie T. A.,Weyl Olaf L. F.

Abstract

Biological invasions threaten biodiversity on a global scale, therefore, developing predictive methods to understand variation in ecological change conferred is essential. Trophic interaction strength underpins community dynamics, however, these interactions can be profoundly affected by abiotic context, such as substrate type. The red swamp crayfish (Procambarus clarkii) has successfully invaded a number of freshwater ecosystems. We experimentally derive the Functional Response (FR) (density dependent predation) of the red swamp crayfish preying upon both a benthic prey; chironomid larvae, and a pelagic prey; Daphnia magna, on a no substrate control, sand, and gravel substrates to determine whether (1) there is a higher impact on prey that are benthic, and (2) whether the presence of different substrate types can dampen the interaction strength. We apply and demonstrate the utility of the Functional Response Ratio (FRR) metric in unravelling differences in ecological impact not obvious from traditional FR curves. Procambarus clarkii is capable of constantly utilising high numbers of both benthic and pelagic prey items, showing a Type II functional response under all scenarios. The presence of gravel and sand substrate each independently decreased the magnitude FR upon D. magna. Though, with regards to chironomid larvae the FR curves showed no difference in magnitude FR, the FRR reveals that the highest impact is conferred when foraging on sand substrate. This reinforces the need for impact assessments to be contextually relevant.

Publisher

Pensoft Publishers

Subject

Insect Science,Plant Science,Ecological Modelling,Animal Science and Zoology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3