Assessing biological invasion predatory impacts through interaction strengths and morphological trophic profiling

Author:

Mpanza Nobuhle P.,Cuthbert Ross N.,Pegg Josephine,Wasserman Ryan J.

Abstract

AbstractBiological invasions are a major stressor on ecosystems worldwide, but tools to predict their predatory impact remain limited. Here, we quantified invader impacts using two complementary approaches: functional responses (to reveal per capita and multiple predator interaction strengths) and ecomorphology (to reveal trophic profiles and competitive overlap). We compared Mozambique tilapia Oreochromis mossambicus, a native southern African cichlid, and a near-trophically analogous invasive congener, the Nile tilapia Oreochromis niloticus. Both Nile tilapia and Mozambique tilapia exhibited a potentially prey population destabilizing Type II functional response. In both single and multiple predator pairings, invasive Nile tilapia had significantly greater prey consumption rates than native Mozambique tilapia, and thereby a greater predatory impact than its native congeneric. Attack rates were greater for Nile tilapia than Mozambique tilapia, with both species showing more similar handling times and maximum feeding rates. No evidence for multiple predator effects was detected within or between these species, and therefore impacts of both species increased additively in the presence of conspecific or heterospecific competitors. Morphological trait analyses found general differences between these two species, with the invasive Nile tilapia having distinctively larger lower jaw closing force, gill resistance and gill raker length, which facilitated greater feeding capacities over the native species. Trophic profiles predicted using morphological trait differences showed high dietary overlap and served as evidence for potential exploitative competition between the two species. These results reveal superior interaction strengths and ecomorphological trait profiles of an invasive over native species which could influence impact and native species replacement dynamics. Novel applications of functional response and ecomorphology provide complementary insights into predatory and competitive impacts from invasive species, aiding impact prediction across environmental contexts.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3