Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method

Author:

Göksu Taha Tuna1ORCID

Affiliation:

1. ADIYAMAN ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

This study investigated the effect of the response surface method (RSM) on heat sinks designed in block types and using various fluids. The RSM method was applied to the data obtained from heat sinks designed in block type placed in both vertical and horizontal directions using water, mono, nanofluids, and hybrid nanofluids. The data were collected under five different pressure boundary conditions and applied to 144 data sets. The Box-Behnken method was used to analyze the design parameters and derive equations for seven different parameters: density, viscosity, specific heat, thermal conductivity, block thickness, block distances, and inlet pressure boundary conditions. The equations were used to determine the average CPU temperature, thermal resistance, and Performance Evaluation Criteria (PEC). The findings show that the R2 values for thermal resistance (Rth), average CPU temperature (Tm), and performance evaluation criteria (PEC) for flat arrangements are 99.21%, 99.21%, and 99.37%, respectively. The R2 values for the vertically designed geometries are 97.66%, 97.66%, and 98.45%, indicating a strong correlation between the results obtained from FLUENT and the ANOVA statistical results. The linear, square, and cubic effects of each variable had a significant impact on each solution. The study concluded that the RSM method has a significant effect on heat sinks with higher R2 values in horizontal arrangements and a higher distance between blocks. Another important result showed that increasing the block thickness also has a significant effect on Rth and Tm, homogenizing the temperature distribution while increasing the cooling capacity.

Publisher

Fırat University, Faculty of Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3