Ceilometer-Based Analysis of Shanghai’s Boundary Layer Height (under Rain- and Fog-Free Conditions)

Author:

Peng Jie12,Grimmond C. S. B.3,Fu Xinshu12,Chang Yuanyong12,Zhang Guangliang4,Guo Jibing4,Tang Chenyang4,Gao Jie5,Xu Xiaodong6,Tan Jianguo12

Affiliation:

1. a Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China

2. b Shanghai Key Laboratory of Meteorological and Health, Shanghai Meteorological Service, Shanghai, China

3. c Department of Meteorology, University of Reading, Reading, United Kingdom

4. d Fengxian Meteorological Service, Shanghai Meteorological Service, Shanghai, China

5. e Shanghai Central Meteorological Observatory, Shanghai Meteorological Service, Shanghai, China

6. f Department of Integrated Observations and Forecasting, Shanghai Meteorological Service, Shanghai, China

Abstract

AbstractTo investigate the boundary layer dynamics of the coastal megacity Shanghai, China, backscatter data measured by a Vaisala CL51 ceilometer are analyzed with a modified ideal curve fitting algorithm. The boundary layer height zi retrieved by this method and from radiosondes compare reasonably overall. Analyses of mobile and stationary ceilometer data provide spatial and temporal characteristics of Shanghai’s boundary layer height. The consistency between when the ceilometer is moving and stationary highlights the potential of mobile observations of transects across cities. An analysis of 16 months of zi measured at the Fengxian site in Shanghai reveals that the diurnal variation of zi in the four seasons follows the expected pattern; for all seasons zi starts to increase at sunrise, reflecting the influence of solar radiation. However, the boundary layer height is generally higher in autumn and winter than in summer and spring (mean hourly averaged zi for days with low cloud fraction at 1100–1200 local time are 900, 654, 934, and 768 m for spring, summer, autumn, and winter, respectively). This is attributed to seasonal differences in the dominant meteorological conditions, including the effects of a sea breeze at the near-coastal Fengxian site. Given the success of the retrieval method, other ceilometers installed across Shanghai are now being analyzed to understand more about the spatial dynamics of zi and to investigate in more detail the effects of prevailing mesoscale circulations and their seasonal dynamics.

Funder

Met Office/Newton Fund CSSP-China

Shanghai Science and Technology Committee Research Project

China Clean Development Mechanism Fund Grants Program

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3