Radiation Fluxes in a Business District of Shanghai, China

Author:

Ao Xiangyu1,Grimmond C. S. B.2,Liu Dongwei1,Han Zhihui1,Hu Ping3,Wang Yadong3,Zhen Xinrong4,Tan Jianguo14

Affiliation:

1. a Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China

2. b Department of Meteorology, University of Reading, Reading, United Kingdom

3. c Shanghai Meteorological Information and Technological Support Centre, Shanghai, China

4. d Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China

Abstract

AbstractRadiative fluxes are key drivers of surface–atmosphere heat exchanges in cities. Here the first yearlong (December 2012–November 2013) measurements of the full radiation balance for a dense urban site in Shanghai, China, are presented, collected with a CNR4 net radiometer mounted 80 m above ground. Clear-sky incoming shortwave radiation K (median daytime maxima) ranges from 575 W m−2 in winter to 875 W m−2 in spring, with cloud cover reducing the daily maxima by about 160 W m−2. The median incoming longwave radiation daytime maxima are 305 and 468 W m−2 in winter and summer, respectively, with increases of 30 and 15 W m−2 for cloudy conditions. The effect of air quality is evident: haze conditions decrease hourly median K by 11.3%. The midday (1100–1300 LST) clear-sky surface albedo α is 0.128, 0.141, 0.143, and 0.129 for winter, spring, summer, and autumn, respectively. The value of α varies with solar elevation and azimuth angle because of the heterogeneity of the urban surface. In winter, shadows play an important role in decreasing α in the late afternoon. For the site, the bulk α is 0.14. The Net All-Wave Radiation Parameterization Scheme/Surface Urban Energy and Water Balance Scheme (NARP/SUEWS) land surface model reproduces the radiation components at this site well, which is a promising result for applications elsewhere. These observations help to fill the gap of long-term radiation measurements in East Asian and low-latitude cities, quantifying the effects of season, cloud cover, and air quality.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3