Performance of Ocean Simulations in the Coupled HWRF–HYCOM Model

Author:

Kim Hyun-Sook1,Lozano Carlos2,Tallapragada Vijay3,Iredell Dan1,Sheinin Dmitry4,Tolman Hendrik L.2,Gerald Vera M.2,Sims Jamese5

Affiliation:

1. I. M. Systems Group Inc., and Marine Modeling and Analysis Branch, NOAA/NWS/NCEP/EMC, College Park, Maryland

2. Marine Modeling and Analysis Branch, NOAA/NWS/NCEP/EMC, College Park, Maryland

3. Hurricane Modeling, NOAA/NWS/NCEP/EMC, College Park, Maryland

4. I. M. Systems Group Inc., and Global Climate and Weather Modeling Branch, NOAA/NWS/NCEP/EMC, College Park, Maryland

5. Marine Modeling and Analysis Branch, NOAA/NWS/NCEP/EMC, College Park, and Operations and Requirements Division, NOAA/NWS/OCWWS, Silver Spring, Maryland

Abstract

Abstract This paper introduces a next-generation operational Hurricane Weather Research and Forecasting (HWRF) system that was developed at the U.S. National Centers for Environmental Prediction. The new system, HWRF–Hybrid Coordinate Ocean Model (HYCOM), retains the same atmospheric component of operational HWRF, but it replaces the feature-model-based Princeton Ocean Model (POM) with the eddy-resolving HYCOM. The primary motivation is to improve enthalpy fluxes in the air–sea interface, by providing the best possible estimates of the balanced oceanic states using data assimilated Real-Time Ocean Forecast System products as oceanic initial conditions (IC) and boundary conditions. A proof-of-concept exercise of HWRF–HYCOM is conducted by validating ocean simulations, followed by the verification of hurricane forecasts. The ocean validation employs airborne expendable bathythermograph sampled during Hurricane Gustav (2008). Storm-driven sea surface temperature changes agree within 0.1° and 0.5°C of the mean and root-mean-square difference, respectively. In-storm deepening mixed layer and shoaling 26°C isotherm depth are similar to observations, but they are overpredicted at similar magnitudes of their ICs. The forecast verification for 10 Atlantic hurricanes in 2008 and 2009 shows that HWRF–HYCOM improves intensity by 13.8% and reduces positive bias by 43.9% over HWRF–POM. The HWRF–HYCOM track forecast is indifferent, except for days 4 and 5, when it shows better skill (8%) than HWRF–POM. While this study proves the concept and results in a better skillful hurricane forecast, one well-defined conclusion is to improve the estimates of IC, particularly the oceanic upper layer.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3