The impact of coupling a dynamic ocean in the Hurricane Analysis and Forecast System

Author:

Gramer Lewis J.,Steffen John,Aristizabal Vargas Maria,Kim Hyun-Sook

Abstract

Coupling a three-dimensional ocean circulation model to an atmospheric model can significantly improve forecasting of tropical cyclones (TCs). This is particularly true of forecasts for TC intensity (maximum sustained surface wind and minimum central pressure), but also for structure (e.g., surface wind-field sizes). This study seeks to explore the physical mechanisms by which a dynamic ocean influences TC evolution, using an operational TC model. The authors evaluated impacts of ocean-coupling on TC intensity and structure forecasts from NOAA’s Hurricane Analysis and Forecast System v1.0 B (HFSB), which became operational at the NOAA National Weather Service in 2023. The study compared existing HFSB coupled simulations with simulations using an identical model configuration in which the dynamic ocean coupling was replaced by a simple diurnally varying sea surface temperature model. The authors analyzed TCs of interest from the 2020–2022 Atlantic hurricane seasons, selecting forecast cycles with small coupled track-forecast errors for detailed analysis. The results show the link between the dynamic, coupled ocean response to TCs and coincident TC structural changes directly related to changing intensity and surface wind-field size. These results show the importance of coupling in forecasting slower-moving TCs and those with larger surface wind fields. However, there are unexpected instances where coupling impacts the near-TC atmospheric environment (e.g., mid-level moisture intrusion), ultimately affecting intensity forecasts. These results suggest that, even for more rapidly moving and smaller TCs, the influence of the ocean response to the wind field in the near-TC atmospheric environment is important for TC forecasting. The authors also examined cases where coupling degrades forecast performance. Statistical comparisons of coupled versus uncoupled HFSB further show an interesting tendency: high biases in peak surface winds for the uncoupled forecasts contrast with corresponding low biases, contrary to expectations, in coupled forecasts; the coupled forecasts also show a significant negative bias in the radii of 34 kt winds relative to National Hurricane Center best track estimates. By contrast, coupled forecasts show very small bias in minimum central pressure compared with a strong negative bias in uncoupled. Possible explanations for these discrepancies are discussed. The ultimate goal of this work will be to enable better evaluation and forecast improvement of TC models in future work.

Publisher

Frontiers Media SA

Reference75 articles.

1. Effect of sea surface temperature on the trajectory of a tropical cyclone;Agrenich;Soviet Meteorology Hydrology,1984

2. Performance of basin-scale HWRF tropical cyclone track forecasts;Alaka;Weather Forecast.,2017

3. A hydrodynamical atmosphere/ocean coupled modeling system for multiple tropical cyclones;Alaka Jr;Atmosphere,2020

4. Influence of CyGNSS L2 wind data on tropical cyclone analysis and forecasts in the coupled HAFS/HYCOM system;Annane;Earth Sci. Special Ed,2024

5. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model;Bender;J. Geophys. Res. Atmos.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3