Evaluation of the ocean component on different coupled hurricane forecasting models using upper-ocean metrics relevant to air-sea heat fluxes during Hurricane Dorian (2019)

Author:

Aristizábal Vargas Maria F.,Kim Hyun-Sook,Le Hénaff Matthieu,Miles Travis,Glenn Scott,Goni Gustavo

Abstract

In August 2019 Hurricane Dorian traveled through the Caribbean Sea and Tropical Atlantic before devastating the Bahamas. The operational hurricane forecasting models under-predicted the intensity evolution of Dorian prior to the storm reaching its maximum strength. Research studies have shown that a more realistic upper-ocean characterization in coupled atmosphere-ocean models used to forecast hurricanes has the potential to lead to more accurate hurricane intensity forecasts. In this work, we evaluated four ocean products: the ocean component from one NOAA operational hurricane forecasting model that used ocean initial conditions from climatology, the ocean components from two NOAA experimental models using ocean initial conditions from a data-assimilative operational ocean model, and one US Navy data-assimilative operational ocean model for reference. The upper-ocean metrics used to evaluate the models include mixed layer temperature, mixed layer salinity, ocean heat content and depth-averaged temperature in the top 100 m. The observations used are temperature and salinity profiles from an array of six autonomous underwater gliders deployed in the Caribbean region during the 2019 hurricane season. We found that, even though the four models have good skill in predicting temperature and salinity over the whole observed water column, skill significantly deteriorates for the upper-ocean metrics. In particular, the models failed to capture the barrier layer that was present during the passage of Hurricane Dorian through the glider array. We also found that even small differences in the mixed layer temperature along the storm track on the hurricane models evaluated, led to noticeable differences in the total enthalpy fluxes delivered from the ocean to the atmosphere throughout the storm’s synoptic history. These findings highlight the need to improve the upper-ocean initial conditions and representation in coupled atmosphere-ocean models as part of the larger efforts to improve the various modeling aspects that control the hurricane intensity forecast.

Publisher

Frontiers Media SA

Reference42 articles.

1. Ocean barrier layers’ effect on tropical cyclone intensification;Balaguru;Proc. Natl. Acad. Sci.,2012

2. Pronounced impact of salinity on rapidly intensifying tropical cyclones;Balaguru;Bull. Am. Meteorological Soc.,2020

3. Hurricane weather research and forecasting (hwrf) model: 2018 scientific documentation BiswasM. K. AbarcaS. BernardetL. GinisI. GrellE. IaconoM. 2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3