Lagrangian Integro-Difference Equation Model for Precipitation Nowcasting

Author:

Abstract

Abstract Delivering reliable nowcasts (short-range forecasts) of severe rainfall and the resulting flash floods is important in densely populated urban areas. The conventional method is advection-based extrapolation of radar echoes. However, during rapidly evolving convective rainfall this so-called Lagrangian persistence (LP) approach is limited to deterministic and very short-range nowcasts. To address these limitations in the 1-h time range, a novel extension of LP, called Lagrangian Integro-Difference equation model with Autoregression (LINDA), is proposed. The model consists of five components: 1) identification of rain cells, 2) advection, 3) autoregressive process describing growth and decay of the cells, 4) convolution describing loss of predictability at small scales, and 5) stochastic perturbations to simulate forecast uncertainty. Advection is separated from the other components that are applied in the Lagrangian coordinates. The reliability of LINDA is evaluated using the NEXRAD WSR-88D radar that covers the Dallas–Fort Worth metropolitan area, as well as the NEXRAD mosaic covering the continental United States. This is done with two different configurations: LINDA-D for deterministic and LINDA-P for probabilistic nowcasts. The validation dataset consists of 11 rainfall events during 2018–20. For predicting moderate to heavy rainfall (5–20 mm h−1), LINDA outperforms the previously proposed LP-based approaches. The most significant improvement is seen for the ETS and POD statistics with the 5 mm h−1 threshold. For 30-min nowcasts, they show 15% and 16% increases, respectively, to the second-best method and 48% and 34% increases compared to LP. For the 5 mm h−1 threshold, the increase in the relative operating characteristic (ROC) skill score of 30-min nowcasts from the second-best method is 10%. Significance Statement Delivering reliable forecasts of severe rainfall for the next few hours has a major societal importance. This is particularly true for densely populated urban areas, where flash floods can cause property damage and loss of lives. Such forecasts are conventionally produced by direct extrapolation of weather radar measurements. However, for intense localized rainfall this approach has low prediction ability beyond 30 min. To extend this limit, we propose a novel method that combines machine vision with a statistical model for growth and decay of rainfall. The method is designed for predicting highly localized rain cells and bands. In addition, a stochastic extension for producing probabilistic forecasts is developed. Using several verification metrics, we demonstrate that for predicting moderate to heavy rainfall (5–20 mm h−1), the proposed method has significantly improved forecast skill compared to the reference methods. The evaluation is done by using the NEXRAD WSR-88D that covers the Dallas–Fort Worth urban metroplex with a population of over 7 million. Demonstration of the applicability of LINDA in a larger domain is done by using the NEXRAD radar network that covers the continental United States.

Funder

finnish academy of science and letters

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3