GAN-argcPredNet v2.0: a radar echo extrapolation model based on spatiotemporal process enhancement

Author:

Zheng KunORCID,Tan Qiya,Ruan Huihua,Zhang Jinbiao,Luo Cong,Tang Siyu,Yi Yunlei,Tian Yugang,Cheng JianmeiORCID

Abstract

Abstract. Precipitation nowcasting has important implications for urban operation and flood prevention. Radar echo extrapolation is a common method in precipitation nowcasting. Using deep learning models to extrapolate radar echo data has great potential. The increase of lead time leads to a weaker correlation between the real rainfall evolution and the generated images. The evolution information is easily lost during extrapolation, which is reflected as echo attenuation. Existing models, including generative adversarial network (GAN)-based models, have difficulty curbing attenuation, resulting in insufficient accuracy in rainfall prediction. To solve this issue, a spatiotemporal process enhancement network (GAN-argcPredNet v2.0) based on GAN-argcPredNet v1.0 has been designed. GAN-argcPredNet v2.0 curbs attenuation by avoiding blurring or maintaining the intensity. A spatiotemporal image correlation (STIC) prediction network is designed as the generator. By suppressing the blurring effect of rain distribution and reducing the negative bias by STIC attention, the generator generates more accurate images. Furthermore, the discriminator is a channel–spatial (CS) convolution network. The discriminator enhances the discrimination of echo information and provides better guidance to the generator in image generation by CS attention. The experiments are based on the radar dataset of southern China. The results show that GAN-argcPredNet v2.0 performs better than other models. In heavy rainfall prediction, compared with the baseline, the probability of detection (POD), the critical success index (CSI), the Heidke skill score (HSS) and bias score increase by 18.8 %, 17.0 %, 17.2 % and 26.3 %, respectively. The false alarm ratio (FAR) decreases by 3.0 %.

Funder

Science and Technology Planning Project of Guangdong Province

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Cross-Modal Spatiotemporal Joint Predictive Network for Rainfall Nowcasting;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3