DEUCE v1.0: a neural network for probabilistic precipitation nowcasting with aleatoric and epistemic uncertainties

Author:

Harnist BentORCID,Pulkkinen SeppoORCID,Mäkinen Terhi

Abstract

Abstract. Precipitation nowcasting (forecasting locally for 0–6 h) serves both public security and industries, facilitating the mitigation of losses incurred due to, e.g., flash floods and is usually done by predicting weather radar echoes, which provide better performance than numerical weather prediction (NWP) at that scale. Probabilistic nowcasts are especially useful as they provide a desirable framework for operational decision-making. Many extrapolation-based statistical nowcasting methods exist, but they all suffer from a limited ability to capture the nonlinear growth and decay of precipitation, leading to a recent paradigm shift towards deep-learning methods which are more capable of representing these patterns. Despite its potential advantages, the application of deep learning in probabilistic nowcasting has only recently started to be explored. Here we develop a novel probabilistic precipitation nowcasting method, based on Bayesian neural networks with variational inference and the U-Net architecture, named DEUCE. The method estimates the total predictive uncertainty in the precipitation by combining estimates of the epistemic (knowledge-related and reducible) and heteroscedastic aleatoric (data-dependent and irreducible) uncertainties, using them to produce an ensemble of development scenarios for the following 60 min. DEUCE is trained and verified using Finnish Meteorological Institute radar composites compared to established classical models. Our model is found to produce both skillful and reliable probabilistic nowcasts based on various evaluation criteria. It improves the receiver operating characteristic (ROC) area under the curve scores 1 %–5 % over STEPS and LINDA-P baselines and comes close to the best-performer STEPS on a continuous ranked probability score (CRPS) metric. The reliability of DEUCE is demonstrated with, e.g., having the lowest expected calibration error at 20 and 25 dBZ reflectivity thresholds and coming second at 35 dBZ. On the other hand, the deterministic performance of ensemble means is found to be worse than that of extrapolation and LINDA-D baselines. Last, the composition of the predictive uncertainty is analyzed and described, with the conclusion that aleatoric uncertainty is more significant and informative than epistemic uncertainty in the DEUCE model.

Funder

Research Council of Finland

Publisher

Copernicus GmbH

Reference54 articles.

1. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Inform. Fusion, 76, 243–297, https://doi.org/10.1016/j.inffus.2021.05.008, 2021. a

2. Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine Learning for Precipitation Nowcasting from Radar Images, arXiv [preprint], https://doi.org/10.48550/arXiv.1912.12132, 2019. a

3. Alexander, C., Dowell, D. C., Hu, M., Olson, J., Smirnova, T., Ladwig, T., Weygandt, S., Kenyon, J. S., James, E., Lin, H., Grell, G., Ge, G., Alcott, T., Benjamin, S., Brown, J. M., Toy, M. D., Ahmadov, R., Back, A., Duda, J. D., Smith, M. B., Hamilton, J. A., Jamison, B. D., Jankov, I., and Turner, D. D.: Rapid Refresh (RAP) and High Resolution Rapid Refresh (HRRR) Model Development, 100th Annual AMS Meeting, Boston Convention and Exhibition Center 415 Summer St. Boston, MA, https://rapidrefresh.noaa.gov/pdf/Alexander_AMS_NWP_2020.pdf (last access: 2 May 2024), 2020. a

4. Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a, b, c

5. Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a, b

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3