DEUCE v1.0: a neural network for probabilistic precipitation nowcasting with aleatoric and epistemic uncertainties
-
Published:2024-05-14
Issue:9
Volume:17
Page:3839-3866
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Harnist BentORCID, Pulkkinen SeppoORCID, Mäkinen Terhi
Abstract
Abstract. Precipitation nowcasting (forecasting locally for 0–6 h) serves both public security and industries, facilitating the mitigation of losses incurred due to, e.g., flash floods and is usually done by predicting weather radar echoes, which provide better performance than numerical weather prediction (NWP) at that scale. Probabilistic nowcasts are especially useful as they provide a desirable framework for operational decision-making. Many extrapolation-based statistical nowcasting methods exist, but they all suffer from a limited ability to capture the nonlinear growth and decay of precipitation, leading to a recent paradigm shift towards deep-learning methods which are more capable of representing these patterns. Despite its potential advantages, the application of deep learning in probabilistic nowcasting has only recently started to be explored. Here we develop a novel probabilistic precipitation nowcasting method, based on Bayesian neural networks with variational inference and the U-Net architecture, named DEUCE. The method estimates the total predictive uncertainty in the precipitation by combining estimates of the epistemic (knowledge-related and reducible) and heteroscedastic aleatoric (data-dependent and irreducible) uncertainties, using them to produce an ensemble of development scenarios for the following 60 min. DEUCE is trained and verified using Finnish Meteorological Institute radar composites compared to established classical models. Our model is found to produce both skillful and reliable probabilistic nowcasts based on various evaluation criteria. It improves the receiver operating characteristic (ROC) area under the curve scores 1 %–5 % over STEPS and LINDA-P baselines and comes close to the best-performer STEPS on a continuous ranked probability score (CRPS) metric. The reliability of DEUCE is demonstrated with, e.g., having the lowest expected calibration error at 20 and 25 dBZ reflectivity thresholds and coming second at 35 dBZ. On the other hand, the deterministic performance of ensemble means is found to be worse than that of extrapolation and LINDA-D baselines. Last, the composition of the predictive uncertainty is analyzed and described, with the conclusion that aleatoric uncertainty is more significant and informative than epistemic uncertainty in the DEUCE model.
Funder
Research Council of Finland
Publisher
Copernicus GmbH
Reference54 articles.
1. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Inform. Fusion, 76, 243–297, https://doi.org/10.1016/j.inffus.2021.05.008, 2021. a 2. Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine Learning for Precipitation Nowcasting from Radar Images, arXiv [preprint], https://doi.org/10.48550/arXiv.1912.12132, 2019. a 3. Alexander, C., Dowell, D. C., Hu, M., Olson, J., Smirnova, T., Ladwig, T., Weygandt, S., Kenyon, J. S., James, E., Lin, H., Grell, G., Ge, G., Alcott, T., Benjamin, S., Brown, J. M., Toy, M. D., Ahmadov, R., Back, A., Duda, J. D., Smith, M. B., Hamilton, J. A., Jamison, B. D., Jankov, I., and Turner, D. D.: Rapid Refresh (RAP) and High Resolution Rapid Refresh (HRRR) Model Development, 100th Annual AMS Meeting, Boston Convention and Exhibition Center 415 Summer St. Boston, MA, https://rapidrefresh.noaa.gov/pdf/Alexander_AMS_NWP_2020.pdf (last access: 2 May 2024), 2020. a 4. Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a, b, c 5. Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a, b
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|