Using OSSEs to Evaluate the Impacts of Geostationary Infrared Sounders

Author:

McGrath-Spangler Erica L.12,McCarty Will3,Privé N. C.12,Moradi Isaac24,Karpowicz Bryan M.25,McCorkel Joel6

Affiliation:

1. a Morgan State University, Baltimore, Maryland

2. b NASA Global Modeling and Assimilation Office, Greenbelt, Maryland

3. c NASA Headquarters, Washington, D.C.

4. d Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

5. e University of Maryland, Baltimore County, Baltimore, Maryland

6. f NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract An observing system simulation experiment (OSSE) was performed to assess the impact of assimilating hyperspectral infrared (IR) radiances from geostationary orbit on numerical weather prediction, with a focus on the proposed sounder on board the Geostationary Extended Observations (GeoXO) program’s central satellite. Infrared sounders on a geostationary platform would fill several gaps left by IR sounders on polar-orbiting satellites, and the increased temporal resolution would allow the observation of weather phenomena evolution. The framework for this OSSE was the Global Modeling and Assimilation Office (GMAO) OSSE system, which includes a full suite of meteorological observations. The experiment additionally assimilated four identical IR sounders from geostationary orbit to create a “ring” of vertical profiling observations. Based on the experimentation, assimilation of the IR sounders provided a beneficial impact on the analyzed mass and wind fields, particularly in the tropics, and produced an error reduction in the initial 24–48 h of the subsequent forecasts. Specific attention was paid to the impact of the GeoXO Sounder (GXS) over the contiguous United States (CONUS) as this is a region that is well-observed and as such difficult to improve. The forecast sensitivity to observation impact (FSOI) metric, computed across all four synoptic times over the CONUS, reveals that the GXS had the largest impact on the 24-h forecast error of the assimilated hyperspectral infrared satellite radiances as measured using a moist energy error norm. Based on this analysis, the proposed GXS has the potential to improve numerical weather prediction globally and over the CONUS. Significance Statement The purpose of this study is to understand the impact of the proposed geostationary hyperspectral infrared sounder as part of the Geostationary Extended Observations (GeoXO) program on numerical weather prediction. The evaluation was done using a simulated environment, and showed a beneficial impact on the tropical mass and wind fields and an error reduction in the initial 24–48 h forecasts. Over the contiguous United States, the GeoXO Sounder (GXS) performed well and had the largest impact of the assimilated infrared satellite radiances on the 24 h forecast as measured by a moist energy error norm. Based on the results of this study, the proposed GXS has the potential to improve numerical weather prediction.

Funder

NOAA and NASA GeoXO Project

Publisher

American Meteorological Society

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3