Preparing the assimilation of the future MTG‐IRS sounder into the mesoscale numerical weather prediction AROME model

Author:

Coopmann O.1ORCID,Fourrié N.1,Chambon P.1ORCID,Vidot J.1,Brousseau P.1,Martet M.1,Birman C.1

Affiliation:

1. CNRM, Université de Toulouse, Météo‐France and CNRS Toulouse France

Abstract

AbstractThe infrared sounder (IRS) instrument is an infrared Fourier‐transform spectrometer that will be on board the Meteosat Third Generation series of the future European Organization for the Exploitation of Meteorological Satellite's geostationary satellites. It will measure the radiance emitted by the Earth at the top of the atmosphere using 1,960 channels. The IRS will provide high spatial‐ and temporal‐frequency four‐dimensional information on atmospheric temperature and humidity, winds, clouds, and surfaces, as well as on the chemical composition of the atmosphere. The assimilation of these new observations represents a great challenge and opportunity for the improvement of numerical weather prediction (NWP) forecast skill, especially for mesoscale models such as the Applications de la Recherche à l'Opérationnel à Méso‐Echelle (AROME) at Météo‐France. The objectives of this study are to prepare for the assimilation of the IRS in this system and to evaluate its impact on the forecasts when added to the currently assimilated observations. By using an observing system simulation experiment constructed for a mesoscale NWP model. This observing system simulation experiment framework makes use of synthetic observations of both IRS and the currently assimilated observing systems in AROME, constructed from a known and realistic state of the atmosphere. The latter, called the “nature run”, is derived from a long and uninterrupted forecast of the mesoscale model. These observations were assimilated and evaluated using a 1 hr update cycle three‐dimensional variational data assimilation system over 2‐month periods, one in the summer and one in the winter. This study demonstrates the benefits that can be expected from the assimilation of IRS observations into the AROME NWP system. The assimilation of only 75 channels over oceans increases the total amount of observations used in the AROME three‐dimensional variational data assimilation system by about 50%. The IRS impact in terms of forecast scores was evaluated and compared for the summer and winter periods. The main findings are as follows: (a) over both periods the assimilation of these observations leads to statistically improved forecasts over the whole atmospheric column; (b) for the summer‐season experiment, the forecast ranges up to 48 hr are improved; (c) for the winter‐season experiment, the impact on the forecasts is globally positive but is smaller than the summer period and extends only to 24 hr. Based on these results, it is foreseen that the addition of future IRS observations in the AROME NWP systems will significantly improve mesoscale weather forecasts.

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3