Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5)

Author:

Barahona D.ORCID,Molod A.,Bacmeister J.,Nenes A.ORCID,Gettelman A.ORCID,Morrison H.,Phillips V.,Eichmann A.

Abstract

Abstract. This work presents the development of a two-moment cloud microphysics scheme within version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation, and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid-scale vertical velocity distribution accounting for turbulence and gravity wave motion is also implemented. The new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model against satellite retrievals and in situ observations shows agreement of the simulated droplet and ice crystal effective radius, the ice mass mixing ratio and number concentration, and the relative humidity with respect to ice. When using the new microphysics, the fraction of condensate that remains as liquid follows a sigmoidal dependency with temperature, which is in agreement with observations and which fundamentally differs from the linear increase assumed in most models. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. The new microphysics tends to underestimate the coverage of persistent low-level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters. Significant sensitivity remains to variation in the dispersion of the ice crystal size distribution and the critical size for ice autoconversion. Despite these issues, the implementation of the new microphysics leads to a considerably improved and more realistic representation of cloud processes in GEOS-5, and allows the linkage of cloud properties to aerosol emissions.

Publisher

Copernicus GmbH

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Pollen on Hydrometeors and Precipitation in a Convective System;Journal of Geophysical Research: Atmospheres;2024-03-11

2. Using OSSEs to Evaluate GXS Impact in the Context of International Coordination;Journal of Atmospheric and Oceanic Technology;2024-03

3. Mineral dust optical properties for remote sensing and global modeling: A review;Remote Sensing of Environment;2024-03

4. Impact of the TAO/TRITON Array on Reanalyses and Predictions of the 2015 El Niño;Journal of Geophysical Research: Oceans;2023-11

5. Rainy Days in the Arctic;Journal of Climate;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3