Affiliation:
1. School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
2. NASA Goddard Space Flight Center, Greenbelt, Maryland
Abstract
AbstractThis study cross validates the radar reflectivity Z; the rainfall drop size distribution parameter (median volume diameter Do); and the rainfall rate R estimated from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR), a combined PR and TRMM Microwave Imager (TMI) algorithm (COM), and a C-band dual-polarized ground radar (GR) for TRMM overpasses during the passage of tropical cyclone (TC) and non-TC events over Darwin, Australia. Two overpass events during the passage of TC Carlos and 11 non-TC overpass events are used in this study, and the GR is taken as the reference. It is shown that the correspondence is dependent on the precipitation type whereby events with more (less) stratiform rainfall usually have a positive (negative) bias in the reflectivity and the rainfall rate, whereas in the Do the bias is generally positive but small (large). The COM reflectivity estimates are similar to the PR, but it has a smaller bias in the Do for most of the greater stratiform events. This suggests that combining the TMI with the PR adjusts the Do toward the “correct” direction if the GR is taken as the reference. Moreover, the association between the TRMM estimates and the GR for the two TC events, which are highly stratiform in nature, is similar to that observed for the highly stratiform non-TC events (there is no significant difference), but it differs considerably from that observed for the majority of the highly convective non-TC events.
Funder
Centre of Excellence for Climate System Science, Australian Research Council
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献