Using Dual-Polarized Radar and Dual-Frequency Profiler for DSD Characterization: A Case Study from Darwin, Australia

Author:

Bringi V. N.1,Williams C. R.2,Thurai M.1,May P. T.3

Affiliation:

1. Colorado State University, Fort Collins, Colorado

2. Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

3. Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

Abstract

Abstract Comparisons are made between the reflectivity Z, median volume diameter D0, and rain rate R from a dual-frequency profiler and the C-band polarimetric radar (C-POL), which are both located near Darwin, Australia. Examples from the premonsoon “buildup” regime and the monsoon (oceanic) regime are used to illustrate the excellent agreement between the dual-profiler retrievals and the polarimetric radar-based retrievals. This work builds on similar works that were limited in scope to shallow tropical showers and predominantly stratiform rain events. The dual-frequency profiler retrievals of D0 and R herein are based on ensemble statistics, whereas the polarimetric radar retrievals are based on algorithms derived by using one season of disdrometer data from Darwin along with scattering simulations. The latest drop shape versus D relation is used as well as the canting angle distribution results obtained from the 80-m fall bridge experiment in the scattering simulations. The scatterplot of D0 from dual-frequency profiler versus Zdr measurements from C-POL is shown to be consistent not only with the theoretical simulations and prior data but also within prior predicted error bars for both stratiform rain as well as convective rain. Based on dual-frequency profiler–retrieved gamma drop size distribution parameters, a new smoothly varying “separator” indexing scheme has been developed that classifies between stratiform and convective rain types, including a continuous “transition” region between the two. This indexing technique has been applied on a number of low-elevation-angle plan position indicator (PPI) sweeps with the C-POL from the two regime examples, to construct “unconditioned” histograms of D0 in stratiform and convective rain (to within the sensitivity of the radar). With reference to the latter, it is demonstrated that the distribution of D0 is different in the buildup example than in the monsoon example, because of the differences in both the microphysical and kinematic features between the two regimes. In particular, (i) the mean D0 is significantly larger in the buildup example than in the monsoon example, irrespective of rain type; (ii) the histogram width (or standard deviation) is much larger for the buildup example than the monsoon example, irrespective of rain type; and (iii) the histogram skewness is negative for the monsoon regime example because of a lack of larger D0 values, whereas the buildup histogram is positively skewed irrespective of rain type.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference53 articles.

1. Aerosol and trace-gas measurements in the Darwin area during the wet season.;Allen;J. Geophys. Res.,2008

2. Doppler radar characteristics of precipitation at vertical incidence.;Atlas;Rev. Geophys. Space. Sci.,1973

3. Laboratory measurements of small raindrop distortion. Part II: Oscillation frequencies and modes.;Beard;J. Atmos. Sci.,1991

4. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment.;Brandes;J. Appl. Meteor.,2002

5. An evaluation of a drop-distribution-based polarimetric radar rainfall estimator.;Brandes;J. Appl. Meteor.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3