Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms
-
Published:2020-02-11
Issue:2
Volume:13
Page:645-659
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Crisologo IreneORCID, Heistermann Maik
Abstract
Abstract. Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. Baldini, L., Chandrasekar, V., and Moisseev, D.: Microwave radar signatures of
precipitation from S band to Ka band: application to GPM
mission, Eur. J. Remote Sens., 45, 75–88,
https://doi.org/10.5721/EuJRS20124508,
2012. a 2. Bech, J., Codina, B., Lorente, J., and Bebbington, D.: The sensitivity of
single polarization weather radar beam blockage correction to variability in
the vertical refractivity gradient, J. Atmos. Ocean.
Tech., 20, 845–855,
2003. a 3. Bolen, S. M. and Chandrasekar, V.: Methodology for aligning and comparing
spaceborne radar and ground-based radar observations, J. Atmos. Ocean. Tech., 20, 647–659,
2003. a 4. Bringi, V. N., Chandrasekar, V., Balakrishnan, N., and Zrnić, D. S.: An
Examination of Propagation Effects in Rainfall on Radar
Measurements at Microwave Frequencies, J. Atmos.
Ocean. Tech., 7, 829–840,
https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2,
1990. a 5. Cao, Q., Hong, Y., Qi, Y., Wen, Y., Zhang, J., Gourley, J. J., and Liao, L.:
Empirical conversion of the vertical profile of reflectivity from Ku-band
to S-band frequency, J. Geophys. Res.-Atmos., 118,
1814–1825, https://doi.org/10.1002/jgrd.50138,
2013. a
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|