Affiliation:
1. a Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
Abstract
Abstract
Numerical weather prediction centers rely on the Gridded Binary Second Edition (GRIB2) file format to efficiently compress and disseminate model output as two-dimensional grids. User processing time and storage requirements are high if many GRIB2 files with size O(100 MB, where B = bytes) need to be accessed routinely. We illustrate one approach to overcome such bottlenecks by reformatting GRIB2 model output from the High-Resolution Rapid Refresh (HRRR) model of the National Centers for Environmental Prediction to a cloud-optimized storage type, Zarr. Archives of the original HRRR GRIB2 files and the resulting Zarr stores on Amazon Web Services (AWS) Simple Storage Service (S3) are available publicly through the Amazon Sustainability Data Initiative. Every hour, the HRRR model produces 18- or 48-hourly GRIB2 surface forecast files of size O(100 MB). To simplify access to the grids in the surface files, we reorganize the HRRR model output for each variable and vertical level into Zarr stores of size O(1 MB), with chunks O(10 kB) containing all forecast lead times for 150 × 150 gridpoint subdomains. Open-source libraries provide efficient access to the compressed Zarr stores using cloud or local computing resources. The HRRR-Zarr approach is illustrated for common applications of sensible weather parameters, including real-time alerts for high-impact situations and retrospective access to output from hundreds to thousands of model runs. For example, time series of surface pressure forecast grids can be accessed using AWS cloud computing resources approximately 40 times as fast from the HRRR-Zarr store as from the HRRR-GRIB2 archive.
Significance Statement
The rapid evolution of computing power and data storage have enabled numerical weather prediction forecasts to be generated faster and with more detail than ever before. The increased temporal and spatial resolution of forecast model output can force end users with finite memory and storage capabilities to make pragmatic decisions about which data to retrieve, archive, and process for their applications. We illustrate an approach to alleviate this access bottleneck for common weather analysis and forecasting applications by using the Amazon Web Services (AWS) Simple Storage Service (S3) to store output from the High-Resolution Rapid Refresh (HRRR) model in Zarr format. Zarr is a relatively new data storage format that is flexible, compressible, and designed to be accessed with open-source software either using cloud or local computing resources. The HRRR-Zarr dataset is publicly available as part of the AWS Sustainability Data Initiative.
Funder
national oceanic and atmospheric administration
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献