Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather

Author:

McGovern Amy1,Elmore Kimberly L.2,Gagne David John3,Haupt Sue Ellen3,Karstens Christopher D.4,Lagerquist Ryan5,Smith Travis2,Williams John K.3

Affiliation:

1. School of Computer Science, University of Oklahoma, Norman, Oklahoma

2. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma

3. National Center for Atmospheric Research, Boulder, Colorado

4. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

5. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract High-impact weather events, such as severe thunderstorms, tornadoes, and hurricanes, cause significant disruptions to infrastructure, property loss, and even fatalities. High-impact events can also positively impact society, such as the impact on savings through renewable energy. Prediction of these events has improved substantially with greater observational capabilities, increased computing power, and better model physics, but there is still significant room for improvement. Artificial intelligence (AI) and data science technologies, specifically machine learning and data mining, bridge the gap between numerical model prediction and real-time guidance by improving accuracy. AI techniques also extract otherwise unavailable information from forecast models by fusing model output with observations to provide additional decision support for forecasters and users. In this work, we demonstrate that applying AI techniques along with a physical understanding of the environment can significantly improve the prediction skill for multiple types of high-impact weather. The AI approach is also a contribution to the growing field of computational sustainability. The authors specifically discuss the prediction of storm duration, severe wind, severe hail, precipitation classification, forecasting for renewable energy, and aviation turbulence. They also discuss how AI techniques can process “big data,” provide insights into high-impact weather phenomena, and improve our understanding of high-impact weather.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 266 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3