Detecting Water Vapor Variability during Heavy Precipitation Events in Hong Kong Using the GPS Tomographic Technique

Author:

Chen Biyan1,Liu Zhizhao1,Wong Wai-Kin2,Woo Wang-Chun2

Affiliation:

1. Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

2. Hong Kong Observatory, Kowloon, Hong Kong, China

Abstract

AbstractWater vapor has a strong influence on the evolution of heavy precipitation events due to the huge latent heat associated with the phase change process of water. Accurate monitoring of atmospheric water vapor distribution is thus essential in predicting the severity and life cycle of heavy rain. This paper presents a systematic study on the application of tomographic solutions to investigate water vapor variations during heavy precipitation events. Using global positioning system (GPS) observations, the wet refractivity field was constructed at a temporal resolution of 30 min for three heavy precipitation events occurring in Hong Kong, China, in 2010–14. The zenith wet delay (ZWD) is shown to be a good indicator in observing the water vapor evolution in heavy rain events. The variabilities of water vapor at five altitude layers (<1000, 1000–2000, 2000–3000, 3000–5000, and >5000 m) were examined. It revealed that water vapor above 3000 m has larger fluctuation than that under 3000 m, though it accounts for only 10%–25% of the total amount of water vapor. The relative humidity fields derived from tomographic results revealed moisture variation, accumulation, saturation, and condensation during the heavy rain events. The water vapor variabilities observed by tomography have been validated using European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis and radiosonde data. The results positively demonstrated the potential of using water vapor tomographic technique for detecting and monitoring the evolution of heavy rain events.

Funder

Hong Kong Research Grants Council (RGC) projects

National Natural Science Foundation of China

Hong Kong Polytechnic University

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3