Assessing the Performance of Water Vapor Products from ERA5 and MERRA-2 during Heavy Rainfall in the Guangxi Region of China

Author:

Huang Ning123ORCID,Fu Shiyang4,Chen Biyan12ORCID,Huang Liangke5ORCID,Jin Wenping6

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410000, China

2. Laboratory of GeoHazards Perception, Cognition and Predication, Central South University, Changsha 410000, China

3. Hunan Engineering Research Center of BDS High Precision Satellite Navigation and Location Based Service, Changsha 410000, China

4. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China

5. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China

6. Hunan Province Mapping and Science and Technology Investigation Institute, Changsha 410000, China

Abstract

Precipitable water vapor (PWV) is a crucial factor in regulating the Earth’s climate. Moreover, it demonstrates a robust correlation with precipitation. Situated in a region known for the generation and development of tropical cyclones, Guangxi in China is highly susceptible to floods triggered via intense rainfall. The atmospheric water vapor in this area displays prominent spatiotemporal features, thus posing challenges for precipitation forecasting. The water vapor products within the MERRA-2 and ERA5 reanalysis datasets present an opportunity to overcome constraints associated with low spatiotemporal resolution. In this study, the PWV data derived from GNSS and meteorological measurements in Guangxi from 2016 to 2018 were used to evaluate the accuracy of MERRA-2 and ERA5 water vapor products and their relationship with water vapor variations during extreme rainfall. Using GNSS PWV as a reference, the average bias of MERRA-2 PWV and ERA5 PWV for heavy rainfall was −0.22 mm and 1.84 mm, respectively, with average RMSE values of 3.72 mm and 3.31 mm. For severe rainfall, the average bias of MERRA-2 PWV and ERA5 PWV was −0.14 mm and 2.92 mm, respectively, with average RMSE values of 4.28 mm and 4.01 mm. During heavy rainfall days from Days 178 to 184 in 2017, the average bias of MERRA-2 PWV and ERA5 PWV was 0.92 mm and 2.42 mm, respectively, with average RMSE values of 4.04 mm and 3.40 mm. The accuracy was highest at the Guiping and Hechi stations and lowest at the Hezhou and Rongshui stations. Furthermore, when comparing MERRA-2/ERA5 PWV with GNSS PWV and actual precipitation, the trends in the variations of MERRA-2/ERA5 PWV were generally consistent with GNSS PWV and aligned with the increasing or decreasing trends of actual precipitation. In addition, ERA5 PWV exhibited high accuracy. Before the onset of heavy rainfall, PWV has a sharp surge. During heavy rainfall, PWV reaches its peak value. Subsequently, after the cessation of heavy rainfall, PWV tends to stabilize. Therefore, the reanalysis data of PWV can effectively reveal significant changes in water vapor and actual precipitation during periods of heavy rainfall in the Guangxi region.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province, China

Research Foundation of the Department of Natural Resources of Hunan Province

Guangxi Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3