Retrieving Winds in the Surface Layer over Land Using an Airborne Doppler Lidar

Author:

Godwin K. S.1,De Wekker S. F. J.2,Emmitt G. D.3

Affiliation:

1. Department of Environmental Sciences, University of Virginia, and Simpson Weather Associates, Inc., Charlottesville, Virginia

2. Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia

3. Simpson Weather Associates, Inc., Charlottesville, Virginia

Abstract

Abstract Airborne Doppler wind lidars are increasingly being used to measure winds in the lower atmosphere at higher spatial resolution than ever before. However, wind retrieval in the range gates closest to the earth’s surface remains problematic. When a laser beam from a nadir-pointing airborne Doppler wind lidar intercepts the ground, the return signal from the ground mixes with the windblown aerosol signal. As a result, winds in a layer adjacent to the surface are often unreliable and removed from wind profiles. This paper describes the problem in detail and discusses a two-step approach to improve near-surface wind retrievals. The two-step approach involves removing high-intensity ground returns and identifying and tracking aerosol radial velocities in the layer affected by ground interference. Using this approach, it is shown that additional range gates closer to the surface can be obtained, thereby further enhancing the potential of airborne Doppler lidar in atmospheric applications. The benefits of the two-step approach are demonstrated using measurements acquired over the Salinas Valley in central California. The additional range gates reveal details of the wind field that were previously not quantified with the original approach, such as a pronounced near-surface wind speed maximum.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3