High-fidelity retrieval from instantaneous line-of-sight returns of nacelle-mounted lidar including supervised machine learning

Author:

Brown Kenneth A.ORCID,Herges Thomas G.

Abstract

Abstract. Wind turbine applications that leverage nacelle-mounted Doppler lidar are hampered by several sources of uncertainty in the lidar measurement, affecting both bias and random errors. Two problems encountered especially for nacelle-mounted lidar are solid interference due to intersection of the line of sight with solid objects behind, within, or in front of the measurement volume and spectral noise due primarily to limited photon capture. These two uncertainties, especially that due to solid interference, can be reduced with high-fidelity retrieval techniques (i.e., including both quality assurance/quality control and subsequent parameter estimation). Our work compares three such techniques, including conventional thresholding, advanced filtering, and a novel application of supervised machine learning with ensemble neural networks, based on their ability to reduce uncertainty introduced by the two observed nonideal spectral features while keeping data availability high. The approach leverages data from a field experiment involving a continuous-wave (CW) SpinnerLidar from the Technical University of Denmark (DTU) that provided scans of a wide range of flows both unwaked and waked by a field turbine. Independent measurements from an adjacent meteorological tower within the sampling volume permit experimental validation of the instantaneous velocity uncertainty remaining after retrieval that stems from solid interference and strong spectral noise, which is a validation that has not been performed previously. All three methods perform similarly for non-interfered returns, but the advanced filtering and machine learning techniques perform better when solid interference is present, which allows them to produce overall standard deviations of error between 0.2 and 0.3 m s−1, or a 1 %–22 % improvement versus the conventional thresholding technique, over the rotor height for the unwaked cases. Between the two improved techniques, the advanced filtering produces 3.5 % higher overall data availability, while the machine learning offers a faster runtime (i.e., ∼ 1 s to evaluate) that is therefore more commensurate with the requirements of real-time turbine control. The retrieval techniques are described in terms of application to CW lidar, though they are also relevant to pulsed lidar. Previous work by the authors (Brown and Herges, 2020) explored a novel attempt to quantify uncertainty in the output of a high-fidelity lidar retrieval technique using simulated lidar returns; this article provides true uncertainty quantification versus independent measurement and does so for three techniques rather than one.

Funder

Office of Energy Efficiency and Renewable Energy

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference61 articles.

1. A2e (Atmosphere to Elections) Data Archive and Portal, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wake Steering Experiment, <span class="uri">https://a2e.energy.gov/about/dap# (last access: 22 September 2020), 2019.

2. Albers, A., Janssen, A., and Mander, J.: German Test Station for Remote Wind Sensing Devices, EWEC, Marseille, https://www.researchgate.net/profile/Axel_Albers/publication/237616810_German_Test_Station_for_Remote_Wind_Sensing_Devices/links/568e2aee08ae78cc0514b121.pdf (last access: 19 September 2020), 2009.

3. Angelou, N., Abari, F. F., Mann, J., Mikkelsen, T., and Sjöholm, M.: Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar, Proc. 26th Int. Laser Radar Conf., Porto Heli, Greece, 10 pp., 2012.

4. Beck, H. and Kühn, M.: Dynamic data filtering of long-range Doppler LiDAR wind speed measurements, Remote Sens., 9, 561, https://doi.org/10.3390/rs9060561, 2017.

5. Benedict, L. and Gould, R.: Towards better uncertainty estimates for turbulence statistics, Exp. Fluids, 22, 129–136, https://doi.org/10.1007/s003480050030, 1996.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3