Wind Preview-Based Model Predictive Control of Multi-Rotor UAVs Using LiDAR

Author:

Mendez Arthur P.1ORCID,Whidborne James F.1ORCID,Chen Lejun2ORCID

Affiliation:

1. Dynamics Simulation and Control Group, Cranfield University, Cranfield MK43 0AL, UK

2. Department of Electronic and Electrical Engineering, University College London, London WC1E 6BT, UK

Abstract

Autonomous outdoor operations of Unmanned Aerial Vehicles (UAVs), such as quadrotors, expose the aircraft to wind gusts causing a significant reduction in their position-holding performance. This vulnerability becomes more critical during the automated docking of these vehicles to outdoor charging stations. Utilising real-time wind preview information for the gust rejection control of UAVs has become more feasible due to the advancement of remote wind sensing technology such as LiDAR. This work proposes the use of a wind-preview-based Model Predictive Controller (MPC) to utilise remote wind measurements from a LiDAR for disturbance rejection. Here a ground-based LiDAR unit is used to predict the incoming wind disturbance at the takeoff and landing site of an autonomous quadrotor UAV. This preview information is then utilised by an MPC to provide the optimal compensation over the defined horizon. Simulations were conducted with LiDAR data gathered from field tests to verify the efficacy of the proposed system and to test the robustness of the wind-preview-based control. The results show a favourable improvement in the aircraft response to wind gusts with the addition of wind preview to the MPC; An 80% improvement in its position-holding performance combined with reduced rotational rates and peak rotational angles signifying a less aggressive approach to increased performance when compared with only feedback based MPC disturbance rejection. System robustness tests demonstrated a 1.75 s or 120% margin in the gust preview’s timing or strength respectively before adverse performance impact. The addition of wind-preview to an MPC has been shown to increase the gust rejection of UAVs over standard feedback-based MPC thus enabling their precision landing onto docking stations in the presence of wind gusts.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Generalized extended state observer based high precision attitude control of quadrotor vehicles subject to wind disturbance;Shi;IEEE Access,2018

2. Waslander, S., and Wang, C. (2009, January 6–9). Wind disturbance estimation and rejection for quadrotor position control. Proceedings of the AIAA Infotech@ Aerospace Conference, Seattle, WA, USA.

3. Pappu, V.S.R., Liu, Y., Horn, J.F., and Cooper, J. (2017, January 24–26). Wind gust estimation on a small VTOL UAV. Proceedings of the 7th AHS Technical Meeting on VTOL Unmanned Aircraft Systems and Autonomy, Mesa, AZ, USA.

4. From PID to active disturbance rejection control;Han;IEEE Trans. Ind. Electron.,2009

5. Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind;Yang;IEEE Trans. Control Syst. Technol.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3