An Assessment of the Impact of Antishattering Tips and Artifact Removal Techniques on Bulk Cloud Ice Microphysical and Optical Properties Measured by the 2D Cloud Probe

Author:

Jackson Robert C.1,McFarquhar Greg M.1

Affiliation:

1. Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Abstract

Abstract A recent study showed that the ratio of the number of distribution functions derived from 2D cloud probes (2DCs) with standard tips to those with antishatter tips used during the 2008 Indirect and Semidirect Aerosol Campaign (ISDAC) and Instrumentation Development and Education in Airborne Science 2011 (IDEAS-2011) was greater than 1 for ice crystals with maximum dimension D < 500 μm. To assess the applicability of 2DC data obtained without antishatter tips previously used in parameterization schemes for numerical models and remote sensing retrievals, the impacts of artifacts on bulk microphysical and scattering properties were examined by quantifying differences between such properties derived from 2DCs with standard and antishatter tips, and with and without the use of shatter detection algorithms using the ISDAC and IDEAS-2011 data. Using either modified tips or algorithms changed the quantities dominated by higher-order moments, such as ice water content, bulk extinction, effective radius, mass-weighted terminal velocity, median mass diameter, asymmetry parameter, and single-scatter albedo, at wavenumbers from 5 to 100 cm−1 and wavelengths of 0.5–5 μm by less than 20%. This is significantly less than the fractional changes quantities dominated by lower-order moments, such as number concentration. The results suggest that model parameterizations and remote sensing techniques based on higher-order moments of ice particle size distributions obtained in conditions similar to those sampled during IDEAS-2011 and ISDAC derived from 2DCs are not substantially biased by shattered remnants.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3