Cloud-Resolving ICON Simulations of Secondary Ice Production in Arctic Mixed-Phase Stratocumuli Observed during M-PACE

Author:

Possner A.1,Pfannkuch K.1,Ramadoss V.1

Affiliation:

1. Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt, Germany

Abstract

Abstract Field measurements and modeling studies suggest that secondary ice production (SIP) may close the gap between observed Arctic ice nucleating particle (INP) concentrations and ice crystal number concentrations (ni). Here, we explore sensitivities with respect to the complexity of different INP parameterizations under the premise that ni is governed by SIP. Idealized, cloud-resolving simulations are performed for the marine cold air outbreak cloud deck sampled during M-PACE with the ICOsahedralNonhydrostatic (ICON) model. The impact of the droplet shattering (DS) of raindrops and collisional breakup (BR) in addition to the existing Hallet-Mossop rime splintering mechanism were investigated. Overall, 12 different model experiments (12 h runs) were performed and analyzed. Despite the considerable amount of uncertainty remaining with regard to SIP mechanisms and their process representation in numerical models, we conclude from these experiments that: (i) only simulations where DS dominates the SIP signal (potentially amplified by BR) capture observed ice-phase and liquid-phase cloud properties, and (ii) SIP events cluster around the convective outflow region and are structurally linked to mesoscale cloud organization. In addition, interactions with primary nucleation parameterizations of varied complexity were investigated. Here, our simulations show that: (i) a stable long-lived mixed-phase cloud (MPC) can be maintained in the absence of primary nucleation once SIP is established, (ii) experiments using a computationally more efficient relaxation-based parameterization of primary nucleation are statistically invariant from simulations considering prognostic INP, and (iii) primary nucleation at cloud-top controls the areal extent of the mixed-phase cloud region, and reduces SIP efficacy via DS due increased depletion of cloud liquid throughout the entire cloud column.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3