Understanding the Distinct Impacts of MCS and Non-MCS Rainfall on the Surface Water Balance in the Central United States Using a Numerical Water-Tagging Technique

Author:

Hu Huancui1,Leung L. Ruby1,Feng Zhe1

Affiliation:

1. Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Abstract

ABSTRACTWarm-season rainfall associated with mesoscale convective systems (MCSs) in the central United States is characterized by higher intensity and nocturnal timing compared to rainfall from non-MCS systems, suggesting their potentially different footprints on the land surface. To differentiate the impacts of MCS and non-MCS rainfall on the surface water balance, a water tracer tool embedded in the Noah land surface model with multiparameterization options (WT-Noah-MP) is used to numerically “tag” water from MCS and non-MCS rainfall separately during April–August (1997–2018) and track their transit in the terrestrial system. From the water-tagging results, over 50% of warm-season rainfall leaves the surface–subsurface system through evapotranspiration by the end of August, but non-MCS rainfall contributes a larger fraction. However, MCS rainfall plays a more important role in generating surface runoff. These differences are mostly attributed to the rainfall intensity differences. The higher-intensity MCS rainfall tends to produce more surface runoff through infiltration excess flow and drives a deeper penetration of the rainwater into the soil. Over 70% of the top 10th percentile runoff is contributed by MCS rainfall, demonstrating its important contribution to local flooding. In contrast, lower-intensity non-MCS rainfall resides mostly in the top layer and contributes more to evapotranspiration through soil evaporation. Diurnal timing of rainfall has negligible effects on the flux partitioning for both MCS and non-MCS rainfall. Differences in soil moisture profiles for MCS and non-MCS rainfall and the resultant evapotranspiration suggest differences in their roles in soil moisture–precipitation feedbacks and ecohydrology.

Funder

Office of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3