Evaluating Mesoscale Convective Systems Over the US in Conventional and Multiscale Modeling Framework Configurations of E3SMv1

Author:

Hsu Wei‐Ching1ORCID,Kooperman Gabriel J.1ORCID,Hannah Walter M.2ORCID,Reed Kevin A.3ORCID,Akinsanola Akintomide A.45ORCID,Pendergrass Angeline G.67ORCID

Affiliation:

1. Department of Geography University of Georgia Athens GA USA

2. Atmospheric, Earth and Energy Division Lawrence Livermore National Laboratory Livermore CA USA

3. School of Marine and Atmospheric Sciences Stony Brook University Stony Brook NY USA

4. Department of Earth and Environmental Sciences University of Illinois Chicago Chicago IL USA

5. Environmental Science Division Argonne National Laboratory Lemont IL USA

6. Climate and Global Dynamics Laboratory National Center for Atmospheric Research Boulder CO USA

7. Department of Earth and Atmospheric Sciences Cornell University Ithaca NY USA

Abstract

AbstractOrganized mesoscale convective systems (MCSs) contribute a significant amount of precipitation in the Central and Eastern US during spring and summer, which impacts the availability of freshwater and flooding events. However, current global Earth system models cannot capture MCSs well and misrepresent the statistics of precipitation in the region. In this study, we investigate the representation of MCSs in three configurations of the Energy Exascale Earth System Model (E3SMv1) by tracking individual storms based on outgoing longwave radiation using a new application of TempestExtremes. Our results indicate that conventional parameterizations of convection, implemented in both low (LR; ∼150 km) and high (HR; ∼25 km) resolution configurations, fail to capture almost all MCS‐like events, in‐part because they underestimate high‐level cloud ice associated with deep convection. On the other hand, the multiscale modeling framework (MMF; cloud‐resolving models embedded in each grid‐column of ∼150 km resolution E3SMv1) configuration represents MCSs and their annual cycle better. Nevertheless, relative to observations, the E3SMv1‐MMF spatial distribution of MCSs and associated precipitation is shifted eastward, and the diurnal timing is lagged. A comparison between the large‐scale environment in E3SMv1‐MMF and ERA5 reanalysis suggests that the biases during the summer in E3SMv1‐MMF are associated with biases in low‐level humidity and meridional moisture transport within the low‐level jet. The fact that conventional parameterizations of convection, even with high‐resolution, cannot capture MCSs over the US suggests that methods with explicit representation of kilometer‐scale convective organization, such as the MMF, may be necessary for improving the simulation of these convective systems.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3